Accepted Manuscript

Title: Oxidative stability of edible argan oil: A two year study

Authors: Saïd Gharby, Hicham Harhar, Dominique Guillaume, Aziza Haddad,

Bertrand Matthäus, Zoubida Charrouf

PII: S0023-6438(10)00257-4

DOI: 10.1016/j.lwt.2010.07.003

Reference: YFSTL 2518

To appear in: LWT - Food Science and Technology

Received Date: 19 March 2010 Revised Date: 31 May 2010 Accepted Date: 2 July 2010

Please cite this article as: Gharby, S., Harhar, H., Guillaume, D., Haddad, A., Matthäus, B., Charrouf, Z. Oxidative stability of edible argan oil: A two year study, LWT - Food Science and Technology (2010), doi: 10.1016/j.lwt.2010.07.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Oxidative stability of edible argan oil: A two year study

2

- 3 Saïd Gharby^{a,b}, Hicham Harhar^a, Dominique Guillaume^{c,*}, Aziza Haddad^b, Bertrand
- 4 Matthäus^d, Zoubida Charrouf^a

5

- 6 ^aLaboratoire de Chimie des Plantes et Synthèse Organique, Département de Chimie,
- 7 Faculté des Sciences, Université MohammedV-Agdal, BP1014, Rabat, Morocco
- 8 bLaboratoire Contrôle Qualité, Lesieur-Cristal, 1 rue Caporal Corbi, 20300 Roches
- 9 Noires-Casablanca, Morocco
- 10 °CNRS-UMR6229, Université de Reims-Champagne Ardenne, 51 rue Cognacq Jay,
- 11 51100 Reims, France
- 12 dMax Rubner-Institute, Federal Research Institute for Nutrition and Food, Department
- 13 for Lipid Research, Piusallee 68/76, 48147 Münster, Germany.

14

E-mail: dominique.guillaume@univ-reims.fr (D. Guillaume)

^{*} Corresponding author. Tel.: +33 326918473; Fax: +33 326918029.

15	ABSTRACT

The present study investigated the oxidative stability of the three marketed types of edible argan oil. Edible argan oil is prepared by pressing the slightly roasted kernels of peeled argan fruit. High quality edible argan oil is exclusively prepared using mechanical presses. However, hand-extracted argan oil is still artisanally produced and can be found in local markets. In this latter case, goat-peeled fruit is still sometimes introduced in the oil production chain even though the resulting oil is notoriously of unsatisfactory quality. The oxidative stability of press-extracted, hand-extracted, and goat-peeled fruit derived argan oil was analyzed using as physicochemical metrics: fatty acid composition, β-carotene level, phosphorus level, tocopherol level, iodine index, saponification, peroxide and acid values, specific extinction, and Rancimat induction time. The variations of these parameters were evaluated over a period of 2 years at 5°C, 25°C (protected or exposed to sunlight), or 40°C. After this period of time, mechanically pressed argan oil still presents an excellent physicochemical profile. Domestic and traditionally prepared argan oil presents much less satisfactory properties after the same period.

33 Keywords: Argania spinosa, edible argan oil, long-term oil preservation, long-term oil

34 quality

1. Introduction

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

The main consequence of the drastic improvements recently brought to argan oil preparative process (Charrouf, Guillaume & Driouich, 2002) was its entry as a major actor in the edible-and-expensive-oil closed circle. Indeed, argan oil that was almost unknown out of the limits of the argan forest twenty years ago is now sold in virtually every gourmet-stores around the world. Edible argan oil is the basis of the Amazigh diet (Charrouf & Guillaume, 2010). It is prepared from the roasted kernels of the fruit of the argan tree (Argania spinosa (L.) Skeels) that is exclusively endemic in Southern Morocco (Morton & Voss, 1987). Recent attempts to sustainably develop this region (Charrouf & Guillaume, 2009) threatened by desertification have been consecutive to its designation as a Biosphere Reserve by UNESCO in 1998 and to our early intensive chemical work principally carried out on argan tree metabolites (Charrouf & Guillaume, 2002; Charrouf & Guillaume, 2005) and its fruit-derived oil (Charrouf & Guillaume, 1999). Some of these efforts have been fruitful and have led to the implantation in the argan forest of several argan oil-producing woman cooperatives where high quality argan oil is now prepared using a strictly controlled process. Particularly, new rules include 1) the banishment of goat-peeled fruit, and therefore the necessary use of scratching machines to peel the argan fruit, and 2) the use of screw-presses to extract the oil in place of water-requiring hand malaxing of argan dough. Consequently, low-grade argan oil has been gradually replaced by high quality argan oil. The combination of high levels of unsaturated fatty acids and antioxidants, and its unique taste and pharmacological properties (Charrouf & Guillaume, 2008), have ultimately boosted high quality argan oil market share.

If the negative influence of hand-malaxing, uncontrolled kernel-roasting time, or "goat-
peeling" on argan oil quality is now particularly well documented (Hilali, Charrouf, El
Aziz Soulhi, Hachimi & Guillaume, 2005; Charrouf, El Hamchi, Mallia, Licitra, &
Guillaume, 2006), the real improvement in terms of oil preservation time has not been
precisely studied and quantified, yet. To fill this gap, we decided to evaluate over a two-
year period the oxidative stability of argan oil prepared 1) traditionally (hand malaxed),
2) mechanically (screw-pressed), and 3) using goat-peeled fruit (hand malaxed and
animal-peeled). Such a study is highly desirable to determine an accurate shelf life for
each type of oil on the domestic or international market. During our study, oil samples
were kept at 5°C, 25°C, or 40°C. Because oil samples refrigerated at 5°C or heated at
40°C were necessarily sunlight protected (fridge or oven; respectively), and since light is
well-known to possibly influence edible oil oxidation (Cinquinta, Esti & La Notte,
1997), we also decided to evaluate the influence of light on our oil samples kept at 25°C
by use of clear-glass or dark-glass bottles. Therefore, twelve oil samples were
periodically analyzed over a two-year period. To be able to eventually link possible
characteristic variations to a preparative process, all our studied oil samples were
prepared in the same cooperative. Consequently, to ascertain the general character of our
results, before the beginning of our study, we first demonstrated the lack of influence of
the geographic origin on argan oil initial physicochemical parameters by comparing the
oxidative stability of argan oil produced at three different locations of the argan forest.

2. Materials and methods

81 2.1 Chemicals and materials

82	All the reagents were of analytical or HPLC grade. Isooctane and isopropanol used as
83	HPLC mobile phase and cyclohexane used for extinction coefficient determination were
84	purchased from Professional Labo (Casablanca, Morocco). Clear- and brown-glass-
85	bottles were purchased from Cfimu sarl (Casablanca, Morocco).
86	
87	2.2 Sample collection
88	Argan oil samples analyzed to determine the initial oxidative parameters were prepared
89	in 2006 in the woman cooperatives of Ait Baha (Chtouka-Ait Baha county, Morocco),
90	Tidzi (Essaouira county, Morocco), and Tiout (Taroudant county, Morocco) following
91	our previously reported protocole (Hilali, Charrouf, El Aziz Soulhi, Hachimi &
92	Guillaume, 2005). For the two-year study, argan oil samples were those prepared in the
93	woman cooperative of Tiout.
94	
95	2.3 Sample distribution
96	For the determination of the initial physicochemical parameters of argan oil, three types
97	of oil were prepared: artisanal argan oil (AAO), mechanically-pressed argan oil (MAO),
98	and traditional artisanal argan oil obtained from goat-peeled fruit (GPAO). Oil samples
99	prepared from Ait Baha, Tidzi, and Tiout are indexed AB, TZ, and TT; respectively.
100	Time-dependent oxidative stability was studied by comparing the physicochemical
101	properties of twelve samples. Ten liters of AAO, MAO, and GPAO were prepared. Each
102	oil type was distributed in 360 60mL-glass bottles: 270 clear- and 90 brown-glass
103	bottles. The remaining oil was used to determine initial values. For a given oil type,
104	thirty clear-glass bottles were stored at 5°C, 25°C, and 40°C. Additionally, thirty brown-

105	glass bottles were stored at 25°C. Headspace volume (bottleneck volume) for each bottle
106	was 3.5 (±0.5) mL.
107	
108	2.4 Analytical methods
109	Samples stored at 5°C were analyzed after 5, 11, 17, and 23 months of storage. Samples
110	stored at 25°C or 40°C were analyzed after 1 month of storage then every two months
111	until month 23.
112	Acid value, peroxide value, saponification value, iodine index, and UV-light absorption
113	$(K_{270} \text{ and } K_{232})$ were determined as previously described (Hilali, Charrouf, El Aziz
114	Soulhi, Hachimi, & Guillaume, 2005).
115	For the fatty acid composition determination, the methyl esters were analyzed on a CP-
116	Wax 52CB column (30m x 0.25 mm i.d.) using helium (flow rate 1mL/mn) as a carrior
117	gas. Initial oven temperature was set at 170°C; injector temperature 200°C; detector
118	temperature 230°C. Injected quantity was 1µL for each analysis.
119	The oxidative stability of each sample was determined as the induction period (IP,
120	hours) recorded by a Rancimat 743 (Metrohm) apparatus using 3 g of oil sample with an
121	air flow of 20 L/h. To identify the initial oxidative parameters, oxidative stability was
122	successively determined at 90°C, 100°C, 110 °C, 120°C, 130°C, and 140°C. For the
123	two-year study, IP was determined at 110°C.
124	Sterol composition was determined after trimethylsilylation of the crude sterol fraction.
125	Trimethylsilylated derivatives were analyzed by gas chromatography using a Varian
126	3800 instrument equipped with a VF-1ms column (30m x 0.25 mm i.d.) using helium
127	(flow rate 1.6 mL/mn) as carrier gas. Column temperature was isothermal at 270°C.

128	injector and detector temperature was 300°C. Injected quantity was 1µL for each
129	analysis.
130	Individual tocopherol content was determined on the basis of the AOCS Official method
131	Ce 8-89 (American Oil Chemists' Society, 1993). Tocopherols were analyzed by HPLC
132	using Shimadzu instruments equipped with a C18-Varian column (25cm x 4mm).
133	Detection was performed using a fluorescence detector (excitation wavelength 290 nm,
134	detection wavelength 330 nm). Eluent used was a 99:1 isooctane/isopropanol (V/V)
135	mixture, flow rate 1.2 mL/mn.
136	Phosphorus content was determined using the NF T60-227 recommendation (Paquot &
137	Hautfenne, 1987).
138	β -Carotene content was determined using a PFX-995 lovibond tintometer (cell length 10
139	mm).
140	
141	Statistical Analysis. Values reported in tables and figures are the means \pm SE of three to
142	five replications. The significance level was set at $P=0.05$. Separation of means was
143	performed by Turkey's test at the 0.05 significance level.
144	
145	3. Results and discussion
146	Genuine edible argan oil is exclusively prepared in Morocco since argan trees are only
147	endemic in this country. Three types of edible argan oil can be found on the market:
148	"certified", "artisanal", and "family". Those denominations reflect the oil preparative
149	process. Certified argan oil is exclusively prepared in woman cooperatives by use of
150	mechanical presses; it is sold on both domestic and international markets. Artisanal

argan oil is prepared by decanting the liquid resulting from the prolonged mixture of
argan dough and water; it is mainly sold on Morocco domestic market but can also be
purchased on the internet. Family argan oil is generally prepared under rudimentary
conditions with the risk of bacteriologically unsafe water and use of goat-peeled fruit; it
is used in the family circle but surplus of oil is sometimes sold on the local market. Each
type of oil presents its own physicochemical (Hilali, Charrouf, El Aziz Soulhi, Hachimi
& Guillaume, 2005) and organoleptic profile (Matthäus, Guillaume, Gharby, Haddad,
Harhar & Charrouf, 2010). The aim of our study was to evaluate the influence of a
prolonged storage on argan oil physicochemical properties and oxidative stability.
Consumption of argan oil usually occurs within 18 to 24 months. Accordingly, we chose
a maximum storage time of two years for our study. Variations in oil processing can
influence the initial oxidation of edible oil (Tatum & Chow, 1992). Therefore, we
decided to determine the oxidative properties of the three common types of edible argan
oil: mechanically-extracted (MAO), artisanally-extracted (AAO), and hand-extracted
using goat-peeled fruit (GPAO). Four different storage conditions: refrigerated at 5°C,
25°C light-unprotected, 25°C light-protected, and 40°C (oven) were considered. Our
study began with the careful determination of the initial parameters of our samples. Due
to the large area covered by the argan forest, the question of the incorporation of the oil
geographic origin as a to-be-considered parameter came out rapidly. Consequently, we
first decided to carry out an oxidative stability study/physicochemical analysis of argan
oil samples coming from the three main locations, in terms of argan oil production, of
the argan forest.

3.1. Determination of the initial physicochemical parameters of the oil samples

Some physicochemical parameters of freshly prepared argan oil have already been reported to be either poorly dependent or independent on the nut harvest location (Charrouf, El Hamchi, Mallia, Licitra, Guillaume, 2006; Cayuela, Rada, Pérez-Camino, Benaissa, Abdelaziz & Guinda, 2008). Because 1) short term autoxidation of argan oil has been only partially studied (Chimi, Cillard & Cillard, 1994; Chimi, 2005), 2) the aspect of preservation has never been investigated in previous studies, 3) equipments used to obtain mechanically prepared argan oil are regularly upgraded, and 4) minute traces of metals can modify oil quality (Marfil, Cabrera-Vique, Giménez, Bouzas, Martínez & Sánchez, 2008), we decided to examine the physicochemical parameters of argan oil samples coming from Ait Baha (AB), Tidzi (TZ), and Tiout (TT), the three largest argan oil woman cooperatives in the argan forest. Table 1 lists the results of the physicochemical parameters analyzed.

Satisfactorily, all fresh argan oil samples displayed the physicochemical properties necessary to access the edible grade as defined by the recommendations of the official argan oil norm (Service de normalisation industrielle, 2003). Nevertheless, the high acid value of GPAO_{TZ} (>0.8%) was incompatible with an "extra virgin" label, even though it was acceptable for a "pure virgin" grade (Service de normalisation industrielle, 2003). Comparison between the determined parameters indicated that MAO consistently contained a significantly higher level of phospholipid/phosphorus than AAO and GPAO. It is likely that the development of heat at the press head during mechanical extraction results in a transfer of phospholipids into the oil and hence to a high amount of phospholipids in MAO. The low amount of phospholipids in AAO and GPAO results from a poor phospholipid extraction at room temperature. Phospholipids can trigger

199	technical problems during oil degumming or refining. In our case, such a consideration
200	is only of limited importance since, oppositely to cosmetic argan oil, edible (extra)
201	virgin argan oil is not refined. More importantly, phospholipids can act as antioxidants
202	or prooxidants (Koprivnjak, Skevin, Valic, Majetic, Petricevic & Ljubenkov, 2008;
203	Choe & Min, 2006) depending on their concentration and the presence of metal ions
204	(Choe & Min, 2006) or tocopherols (Koga & Terao, 1995; Judde, Villeneuve,
205	Rossignol-Castera & Le Guillou, 2003). Since argan oil is notoriously rich in
206	tocopherols, the high content in phospholipids in MAO, compared to AAO and GPAO
207	should merit further attention. Other studied parameters ((un)saturated fatty acid, β -
208	carotene level, UV absorption) were remarkably constant, any of them significantly
209	varying as a function of the oil geographic origin.
210	
211	3.2. Determination of the initial oxidative stability of the oil samples
212	
213	Conversely to argan oil physicochemical parameters, its oxidative stability has
214	never been studied as a function of the oil geographic origin. To get a complete picture

of argan oil oxidative stability, we decided to determine the induction period by Rancimat test at 90, 100, 110, 120, 130, and 140°C of our oil samples prepared in the three different locations. Results obtained at 110°C are presented Table 2.

Interestingly, homogenous Rancimat induction periods were observed within each group. For every given temperature, MAO consistently and independently of the geographic origin displayed much longer rancimat induction periods than AAO or

GPAO. Oxidative stability of argan oil has been attributed to its high content in
tocopherols (Rahmani, 2005), and carotenes (Collier & Lemaire, 1974). Since these
families of components are in a similar quantity in the three types of oil (Hilali,
Charrouf, El Aziz Soulhi, Hachimi & Guillaume, 2005), our results show that in fresh
argan oil, phospholipids do not act as prooxidants, and presumably act as antioxidants,
reinforcing the strong preservation activity of tocopherols. Notably large induction
period differences between the MAO group and the AAO and GPAO groups were
observed between 90 and 110°C. At 90°C, MAO average rancimat induction period was
found to be 110±6 hrs, whereas it was only 76±6 hrs, and 70 ±2 hrs for AAO, and
GPAO, respectively. At 110°C, the difference between the mean rancimat induction
period of MAO and AAO or GPAO was 11±2 hrs. Unexpectedly, AAO and GPAO
displayed similar rancimat induction periods even though GPAO preservation time is
commonly said to be low. This apparent contradiction can be explained since in our
study AAO and GPAO samples were prepared using bacteriologically safe water, a
parameter never controlled when argan oil is prepared in the family circle. Therefore, it
is highly likely that the short preservation time attributed to GPAO, compared to AAO,
principally results from microbiologically-induced damage, rather than a chemically-
assisted process.
The homogenous results observed within each group during this preliminary study
evidenced that consideration of the geographic origin was unnecessary for our study.
Incidentally, we also decided to select 110°C as the optimum temperature to evaluate the
oxidative stability of our oil samples since at this specific temperature afforded well
reproducible results as already observed with olive oil (Mateos, Uceda, Aguilera,
Escuderos & Beltran Maza, 2006).

246	
247	3.3 Preservation of argan oil, a two-year study
248	Initial fatty acid, sterol and tocopherol composition was carried out prior the beginning
249	of our study. Values are listed Table 3-5.
250	3.3.1 Acid value analysis
251	Acid value of MAO, AAO, and GPAO stored at 5°C did not significantly changed over
252	two years. Initial acid values were 0.2 for MAO and AAO, and 0.9 for GPAO. After two
253	years at 5°C, acid value was 0.2, 0.4, and 1 for MAO, AAO, and GPAO; respectively.
254	Acid value of MAO also remained remarkably stable over two years independently on
255	the storage temperature and glass color (Figure 1). After two years at 25°C, acid value of
256	MAO was 0.3. It was 0.4 after two years of storage at 40°C.
257	Acid value of AAO stored in dark bottles at 25°C increased only very slightly (average
258	0.02 acid value unit/month) during the first 17 months of storage to reach the value of
259	0.5. After 17 months of storage, acid value increased 5-fold faster reflecting accelerated
260	triacylglycerol degradation (Figure 1). After 21 months at 25°C in colored glass bottles,
261	acid value of AAO reached the 0.8 limit, loosing its extra virgin label (Service de
262	normalisation industrielle, 2003). When AAO was stored unprotected from sunlight at
263	25°C, increase in acid value began two months sooner and the 0.8 limit was reached
264	after 19 months (Figure 1). However, after two years, final acid value of AAO stored in
265	clear or dark bottles was similar: 1.2±0.2. Stored at 40°C, AAO lost its extra virgin label
266	after 18 months.
267	Initial acid value of GPAO was much higher than that of MAO and AAO and already
268	above the 0.8 limit (Table 1). When stored at 25°C in clear glass bottles, acid value of
269	GPAO significantly and continuously increased (Figure 1) whereas that of samples

270	stored at the same temperature in dark bottles remained stable during 5 months (Figure
271	1). At 40°C, GPAO acid value increased continously, but less rapidly than the acid value
272	of AAO at the same temperature (Figure 1). Interestingly, the 2-year acid value profiles
273	of MAO, AAO, and GPAO stored at 40°C or at 25°C and unprotected from sunlight
274	were almost similar (Figure 1). This result suggests that between 25 and 40°C, light is
275	much more important than temperature to induce triacylglyceride oxidation in argan oil.
276	
277	3.3.2 Peroxide value analysis
278	Peroxides are the primary oxidation products that lead to rancidity. Therefore, their
279	formation dramatically impacts oil shelf life and consumer acceptance. High temperature
280	and light are two well-known factors generally promoting peroxide formation. In argan
281	oil, the respective impact of these two factors is presently unknown. Initial peroxide
282	value of MAO, AAO, and GPAO was found to be below 2 meq of O ₂ /kg oil, well below
283	the maximum peroxide value of 15 meq O ₂ /kg oil defined for the extra virgin argan oil
284	label (Service de normalisation industrielle, 2003). For MAO, AAO, as well as GPAO,
285	storage at 5°C for two years led only to a very slight increase of the peroxide value (data
286	not shown); the highest peroxide value of 3 meq O ₂ /kg oil was observed for AAO.
287	Peroxide value of MAO, AAO, and GPAO stored at 25°C or 40°C behaved differently.
288	When stored at 25°C in dark or clear glass bottles, MAO peroxide value remained below
289	the 15 meq O ₂ /kg oil limit for two years. Accurate examination of the changes indicated
290	that MAO peroxide value increased permanently over two years to reach the almost
291	similar maximum values of 10.7 meq O ₂ /kg oil for MAO protected from sunlight and 12
292	meq O ₂ /kg oil for MAO exposed to sunlight (Figure 2). However, the increase rate
293	seems to be light-dependent since the oxidation kinetic observed between light protected

294	and unprotected samples was different (Figure 2). Argan oil natural antioxidants are also
295	likely to influence this kinetic. Storage of MAO in an oven at 40°C for two years led to
296	peroxide values permanently higher than that observed when stored at 25°C. The final
297	peroxide value was 16.3 meq O_2/kg oil, whereas the limit of 15 meq O_2/kg oil barrier
298	was crossed after 21 months. Interestingly, the profiles of the peroxide values at 40°C
299	and 25°C in dark bottles were similar. This likely means that a process identical, but
300	amplified at 40°C, occurs in MAO protected from sunlight at 25°C or 40°C, and
301	confirms that degradation and oxidative processes occurring in MAO are greatly
302	accelarated under sunlight.
303	AAO stored at 25°C in clear glass bottles crossed the 15 meq O ₂ /kg oil limit after 13
304	months. At the same temperature, 19 months were necessary when AAO was protected
305	from sunlight. When AAO was stored at 25°C and exposed to sunlight, the peroxide
306	value increased quite consistently over two years to reach 25.8 meq O_2/kg oil after two
307	years (Figure 3). Sunlight protection led to lower peroxide values (14.4 meq O ₂ /kg oil,
308	and 18.3 meq O ₂ /kg when stored at 25°C and 40°C; respectively) that were similar to
309	that observed for MAO for corresponding storage conditions. However those values
310	should be carefully handled since peroxide value underwent large fluctuations over two
311	years. Such phenomenon was not observed for MAO possibly suggesting the occurrence
312	for AAO of multiple secondary oxidation processes that did not occur in MAO and
313	hence that could be related to the different content in minor components.
314	With regards to the peroxide value, GPAO satisfied the virgin label requirements for 13
315	and 15 months when stored at 25°C in clear or dark glass bottles; respectively. When
316	GPAO was stored at 25°C in clear glass bottles, peroxide value was at its highest (19.8
317	meq O ₂ /kg oil) after 15 months. Then, it decreased to reach the low value of 6.9 meq

318	O ₂ /kg oil after two years. This phenomenon was amplified at 40°C (Figure 4). At 25°C
319	and protected from sunlight, AAO and GPAO peroxide values behaved globally
320	similarly. Therefore, as already observed from the acid value study, over two years, light
321	also appears as the major parameter promoting hydroperoxide formation in all types of
322	argan oil, elevated temperature favoring only secondary oxidation product formation.
323	
324	3.3.3 K ₂₃₂ analysis
325	Primary oxidation product formation can also be monitored by measuring specific
326	extinction at 232 nm (K_{232}). High quality argan oil should present a K_{232} lower than 2.5
327	(Service de normalisation industrielle, 2003). During two years of storage at 5°C, K_{232} of
328	MAO, AAO and GPAO remained practically constant (initial value 1.06, 1.24, and 1.28
329	vs final value 1.27, 1.29, and 1.52 for MAO, AAO, and GPAO; respectively) as
330	expected from the results of the peroxide value study.
331	When MAO was stored at higher temperature, K_{232} was observed between 1.6 and 2 after
332	2 years. When stored at 25°C in clear or dark glass bottles, K_{232} and peroxide value
333	evolved in a similar way (Figure 2), suggesting the low incidence of secondary oxidative
334	product formation. During storage at 40°C, although peroxide value increased swiftly
335	between months 11 and 17, K_{232} absorption remained quite stable during this period.
336	This strongly suggests the occurrence at 40°C of multiple, complex, and not fully
337	identified oxidative processes for which the involvement of phospholipids can be
338	eliminated since a similar behavior was also observed for AAO and GPAO (Figure 3, 4).
339	
340	Whereas MAO had K_{232} between 1.6 and 2 after two years, AAO K_{232} was between 1.8
341	and 3 after the same period of time. AAO K_{232} crossed the 2.5 barrier after 11 and 17

342	months of storage at 25°C in dark and clear glass bottles; respectively (Figure 3).
343	Surprinsingly, during storage 40°C, K_{232} of AAO never reached the 2.5 value even
344	though observed peroxide value reflected the occurrence of intense oxidative processes.
345	Consequently, in that case, a direct correlation between peroxide value and K_{232} was
346	uneasy to establish, likely due to multiple and concommittant oxidation processes
347	favored by temperature.
348	Finally, for GPAO, K_{232} after two years was between 1.6 and 2.4. K_{232} absorption
349	remained surprisingly stable when GPAO was stored at 25°C in dark bottles. When
350	stored at 25°C in clear bottles, a good correlation was observed between K_{232} and
351	peroxide value, both indexes decreasing after 15 or 17 months (Figure 4). During storage
352	at 40°C, K_{232} and peroxide value increased simultaneously until month 17 but K_{232}
353	remained stable although peroxide value dramatically plummeted after this month.
354	
355	3.3.4. K ₂₇₀ study
356	Carbonyl (aldehyde and ketone) compounds are the most abondant secondary oxidation
357	products formed in edible oils. Their formation is known to be accelerated by elevated
358	temperature and metal traces (Choe & Min, 2006). UV absorption at λ 270 nm (K_{270}) is
359	one of the markers used to follow secondary oxidation formation. Moroccan regulation
360	has set the maximum value for K_{270} at 0.35 (Service de normalisation industrielle, 2003).
361	Overall, K_{270} values did not significantly changed over the 2 years. Initial values are
362	given in Table 1. That argan oil samples stored at 5°C over 2 years displayed stable K_{270}
363	was not surprising. That this trend also occurred for oil samples stored at higher
364	temperature was unexpected. Final K_{270} values for MAO were 0.24, and 0.31 when

365	samples were stored at 25°C, and 40°C, respectively. For GPAO, final values were in
366	the same range for the three storage conditions. Only K_{270} of AAO stored at $40^{\circ}\mathrm{C}$
367	crossed the limit value of 0.35 after 17 months to end up at 0.39±0.05. Independently of
368	the sunlight protection, the final value of AAO stored at 25°C was 0.21±0.05.
369	In summary, K_{232} and peroxide value depict the formation of primary oxidation
370	products. The apparent sample-dependent correlation observed between K_{232} and
371	peroxide value supports the idea of different ratio of hydroperoxides depending on the
372	type of argan oil. Decomposition of these hydroperoxides into secondary oxidation
373	products can be monitored by K_{270} examination. Our results show that hydroperoxides
374	formed in the three types of argan oil decompose to unsaturated secondary oxidation
375	products, and that MAO presents the slowliest decomposition rate. In GPAO, the
376	oxidative profile is more complex. Keeping in mind that MAO presents a highly
377	homogeneous chemical composition, likely induced by its highly homogeneous
378	geographical origin, these observations are of the utmost importance, considering the
379	negative influence of secondary oxidation products on oil taste and smell, from an
380	organoleptic standpoint.
381	

38

383

384

385

386

387

388

382 3.3.5. Rancimat study.

> Then we investigated the oil oxidative stability by measuring every 6 months the rancimat induction period at 110°C of MAO, AAO and GPAO stored in our evaluated conditions. Results are reported Table 6. When oil samples were stored at 5°C, rancimat induction period did not significantly vary over two years. Amazingly, at storage temperatures above 5°C, rancimat induction period of each type of oil decreased during the first 6 months then remained almost unchanged during the last eighteen months.

MAO displayed by far the longest induction period confirming the good preservation properties of this type of oil. Rancimat induction time of oil samples stored at 25°C and exposed to sunlight was found to be slightly but significantly shorter than that of oil samples stored at the same temperature but protected from sunlight. This result is consistent with our previous observations that indicate the occurrence of a slower oxidative process in argan oil samples protected from sunlight. Storage of argan oil at 40°C for 2 years led to a reduction of the rancimat induction period almost similar to that observed for argan oil stored at 25°C and exposed from sunlight.

398 3.3.6. Miscealenous analyses

Finally, we also decided to analyze some of the physicochemical parameters of our oil samples after two years in order to possibly detect variations affecting its pharmacologically essential components. Because most of argan oil therapeutic properties are linked to its high unsaturated fatty acid content, we determined several parameters including the iodine index, saponification value, and fatty acid composition of every oil samples after 2 years (Tables 3-5, 7). Concerning the saponification value, the largest variation was observed for samples stored at 40° C but the saponification value calculated after 2 years was still satisfying the official norm (Service de normalisation industrielle, 2003). Over two years, iodine index underwent a minor reduction due to primary oxidation but, for all samples it was consistently found between 91 and 110 as required by the official norm (Service de normalisation industrielle, 2003). Additionnally, we also analyzed the β -carotene content of our oil samples since β -carotene actively participates in oleic-rich oil protection under

412	autooxidative and photooxidative processes (Goulson & Warthesen, 1999). While $\beta\text{-}$
413	carotene level in MAO remained stable over two years, a strong decrease was observed
414	for AAO stored at 25°C in clear glass bottles likely due to intense oxidative reactions.
415	Measurements for GPAO were inconclusive due to the color variation of the oil samples
416	after two years.
417	Concerning the fatty acid and sterol distribution in each oil samples, no significant
418	changes were observed over two years. Results are listed Tables 3 and 4. Tocopherols
419	possess antioxidative and anti free-radical properties. Therefore oil oxidative stability
420	depends on changes occurring in tocopherol content during storage (Okogeri &
421	Tasioula-Margari, 2002). Tocopherol high concentration in argan oil is not only essential
422	for its preservation but also for its pharmacological activity (Khallouki et al., 2003).
423	Storage of argan oil for two years at 25°C in clear glass bottles resulted in a dramatic
424	decrease in tocopherol level for the three types of oil. Sunlight protection resulted in a
425	reduced tocopherol lost that was nevertheless consequent for oil samples stored at 40°C.
426	Individually considered, α -, β -, and δ -tocopherol levels were almost divided by two after
427	two years of storage in clear glass bottles or at 40°C. Only storage in dark-glass bottles
428	allowed the preservation of a high γ -tocopherol level (Table 5).
429	
430	Conclusions
431	Combined all together, our results designate light as the major factor involved in argan
432	oil oxidation. After two years of storage at 25°C, MAO protected from sunlight displays
433	several physicochemical properties and an oxidative induction period that remained
434	similar to freshly prepared argan oil. MAO is the type of argan oil that is sold on the

435	international market and a shelf life of two years can reasonably be recommended for
436	such oil as long as it is protected from sunlight. Edible argan oil has a characteristic
437	copper color that helps consumers to distinguish it rapidly from other oils. Therefore the
438	use of colored glass bottles is unlikely to be easily accepted by a majority of consumers.
439	Argan bottles are generally packed in cardboard box, such practice should be preserved
440	since to help argan oil preservation.
441	
442	Acknowledgments
443	This work was performed in the frame of "Projet arganier" and financially supported by
444	"Agence de Développement Social" and EEC (#AR05A061P704). We thank
445	Association Ibn Al Baytar, Lesieur-Cristal, cooperatives Targant (Ait Baha), Taitmatine
446	(Tiout), and Tidzi cooperative for their support and assistance in this work.
447	
448	References
449	American Oil Chemists' Society (1993) Determination of tocopherols and tocotrienols
450	in vegetable oils and fats by HPLC. Uniform Methods Committee. AOCS Official
451	Method Ce 8–89. AOCS, Champaign, Il.
452	Cayuela, J. A., Rada, M., Pérez-Camino, M. C., Benaissa, M., Abdelaziz, E. & Guinda,
453	A. (2008). Characterization of artisanally and semiautomatically extracted argan
454	oils from Morocco. European Journal of Lipid Science Technology, 110, 1159-
455	1166.
456	Charrouf, Z., El Hamchi, H., Mallia, S., Licitra, G. & Guillaume, D. (2006). Influence of
457	roasting and seed collection on argan oil odorant composition. Natural Product
458	Communications, 1, 399-404.

- 459 Charrouf, Z. & Guillaume, D. (1999). Ethnoeconomical, ethnomedical and
- phytochemical study of Argania spinosa (L.) Skeels. Journal of
- 461 Ethnopharmacology, 67, 7-14.
- 462 Charrouf, Z. & Guillaume, D. (2002). Secondary metabolites from Argania spinosa (L.)
- Skeels. *Phytochemistry Reviews*, 1, 345-354.
- Charrouf, Z. & Guillaume, D. (2008). Argan oil: Occurrence, composition and impact
- on human health. European Journal of Lipid Science Technology, 110, 632-636.
- 466 Charrouf, Z. & Guillaume, D. (2009). Sustainable development in Northern Africa: The
- argan forest case. Sustainability, 1, 1012-1022.
- 468 Charrouf, Z. & Guillaume, D. (2010). Should the Amazigh Diet (Regular and Moderate
- Argan-Oil Consumption) Have a Beneficial Impact on Human Health? Critical
- 470 Review in Food Science and Nutrition, 50, 473-477.
- 471 Charrouf, Z., Guillaume, D. & Driouich, A. (2002). The argan tree, an asset for
- 472 Morocco. *Biofutur*, 220, 54-57, in French.
- 473 Chimi, H. (2005). Comparative preservation: argan oil and olive oil. Cahiers
- 474 *Agriculture*, 14, 467-471.
- 475 Chimi, H., Cillard, J. & Cillard, P. (1994). Autoxidation of argan oil (Argania spinosa
- 476 L.) from Morocco. Sciences des Aliments., 14, 117-124.
- 477 Choe, E. & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation.
- 478 *Comprehensive Review in Food Science and Food Safety, 5,* 169-186.
- 479 Cinquinta, L., Esti, M. & La Notte, E. (1997). Evolution of phenolic compounds in
- virgin olive oil during storage. Journal of the American Oil Chemist's Society, 74,
- 481 1259-1264.
- Collier, A. & Lemaire, B. (1974). Carotenoids of argan oil. Cahiers Nutrition Diététique,

483	9, 300-301.
484	Goulson, M. J. & Warthesen, J. J. (1999). Stability and antioxidant activity of beta
485	carotene in conventional and high oleic canola oil. Journal of Food Science, 64,
486	996-999.
487	Guillaume, D. & Charrouf, Z. (2005). Saponines et métabolites secondaires de l'arganier
488	(Argania spinosa): état des connaissances. Cahiers Agriculture, 15, 509-516.
489	Hilali, M., Charrouf, Z., El Aziz Soulhi, A., Hachimi, L. & Guillaume, D. (2005).
490	Influence of origin and extraction method on argan oil physico-chemical
491	characteristics and composition. Journal of Agricultural and Food Chemistry, 53,
492	2081-2087.
493	Judde, A., Villeneuve, P., Rossignol-Castera, A. & Le Guillou, A. (2003). Antioxidant
494	effect of soy lecithins on vegetable oil stability and their synergism with
495	tocopherols. Journal of the American Oil Chemist's Society, 80, 1209-1215.
496	Khallouki, F., Younos, C., Soulimani, R., Oster, T., Charrouf, Z., Spiegelhalder, B., et
497	al. (2003). Consumption of argan oil (Morocco) with its unique profile of fatty
498	acids, tocopherols, squalene, sterols and phenolic compounds should confer
499	valuable cancer chemopreventive effects. European Journal of Cancer Prevention,
500	12, 67-75.
501	Koga, T. & Terao, J. (1995). Phospholipids increase radical-scavenging activity of
502	viatmin E in a bulk oil model system. Journal of Agricultural and Food
503	Chemistry, 43, 1450-1454.
504	Koprivnjak, O., Skevin, D., Valic, S., Majetic, V., Petricevic, S. & Ljubenkov, I. (2008).
505	The antioxidant capacity annd oxidative stability of virgin olive oil enriched with
506	phospholipids. Food Chemistry, 111, 121-126.

507	Marfil, R., Cabrera-Vique, C., Giménez, R., Bouzas, P. R., Martínez, O. & Sánchez, J.
508	A. (2008). Metal content and physicochemical parameters used as quality criteria
509	in virgin argan oil: Influence of the extraction method. Journal of Agricultural and
510	Food Chemistry, 56, 7279-7284.
511	Mateos, R., Uceda, M., Aguilera, M. A., Escuderos, M. E. & Beltran Maza, G. (2006).
512	Relationship of rancimat method values at varying temperatures for virgin olive
513	oils. European Food Research and Technology, 223, 246-252.
514	Matthäus, B., Guillaume, D., Gharby, S., Haddad, A., Harhar, H. & Charrouf, Z. (2010).
515	Effect of processing on the quality of edible argan oil. Food Chemistry, 120, 426-
516	432.
517	Morton, J. F. & Voss G. L. (1987). The argan tree (Argania sideroxylon, Sapotaceae), a
518	desert source of edible oil. Economic Botany, 41, 221-233.
519	Okogeri, O. & Tasioula-Margari, M. (2002). Changes occurring in phenolic compounds
520	and α-tocopherol of virgin olive oil during storage. Journal of Agricultural and
521	Food Chemistry, 50, 1077-1080.
522	Paquot, C. & Hautfenne, A. (1987). In IUPAC, Standard methods for the analysis of
523	oils, fats and derivatives. (7th ed.), Blackwell Scientific Publications, Oxford,
524	England, IUPAC, and Standard methods for the analysis of oils, fats and
525	derivatives, Suppl. 1, 7th ed., (1992). Pergamon Press, Oxford, England.
526	Rahmani, M. (2005). Composition chimique de l'huile d'argane vierge. Cahiers
527	Agriculture, 14, 461-465.
528	Service de normalisation industrielle (Snima) (2003). Corps gras d'origine animale et
529	végétale- Huiles d'argane. Spécifications, Norme Marocaine NM 08.5.090. Snima,

530	Rabat (Morocco).
531	Tatum, V. & Chow, C. K. (1992). Effects of processing and storage on fatty acids in
532	edible oils. In: C. K. Chow, Editor, Fatty acids in foods and their health
533	implications, Marcel Dekker, New York, pp. 411–425.

Table 1. Physicochemical parameters of argan oil prepared from argan kernels pressed 1) mechanically (MAO), 2) artisanally pressed (AAO), or 3) artisanally and obtained from goatpeeled fruit (GPAO). Oil samples prepared from Ait Baha, Tidzi, and Tiout are indexed AB, TZ, and TT; respectively. Mean ± standard deviation of the values (five replicates) are presented.

	MAG	MAG	MAG	1.40	440	4.4.0	CDAO	CDAO	CDAO
	MAO_{AB}	MAO_{TZ}	MAO_{TT}	AAO_{AB}	AAO_{TZ}	AAO_{TT}	GPAO _{AB}	$GPAO_{TZ}$	$GPAO_{TT}$
								Y	
Acid Value									
(mg/g)	0.3±0.05	0.3±0.05	0.3±0.02	0.6±0.1	0.5±0.1	0.3±0.1	0.3±0.1	1.1±0.1	0.7±0.1
Peroxide									
value	0.7±0.1	1.2±0.1	0.6±0.1	1±0.1	1±0.1	1±0.2	1.1±0.1	1.3±0.1	1.5±0.2
(Meq/kg)						C			
Moisture	0.07±0.01	0.06±0.01	0.05±0.01	0.08±0.01	0.06±0.02	0.08±0.01	0.06±0.01	0.25±0.01	0.09±0.01
(mg/100mg)									
K_{232}	1.44±0.06	1.18±0.07	1.02±0.06	1.28±0.06	1.21±0.06	1.24±0.06	1.29±0.07	1.49±0.06	1.37±0.06
K_{270}	0.25±0.05	0.2±0.05	0.18±0.05	0.19±0.05	0.18±0.05	0.22±0.05	0.21±0.05	0.18±0.05	0.17±0.05
β-carotene	20±0.5	20±0.5	21±0.5	11±0.5	13±0.5	18±0.5	15±0.3	16±0.5	17.5±0.5
(ppm)					y				
Phosphorus	42.8±0.2	61.5±0.8	80.2±0.8	7.8±0.1	5.3±0.1	3.9±0.1	3.6±0.2	9.1±0.1	6.1±0.1
$(mg/10^3g)$									
Phospholipid	0.3	0.2	0.25	0.02	0.01	0.01	0.01	0.03	0.02
(mg/100mg)									
SFA ^a	19±0.7	17.7±0.5	19.3±0.3	19.1±0.3	18.2±0.1	19.6±0.1	20±0.4	17±0.2	18±0.2
(mg/100mg)			Y						
UFA ^a	80±1	82±0.5	80±0.5	81±0.5	81±0.5	79±0.5	78.5±0.5	82±0.5	80.5±0.2
(mg/100mg)									

^a SFA: saturated fatty acids, UFA: unsaturated fatty acids.

Table 2. Rancimat induction period (hrs) at 110° C of argan oil prepared from argan kernels pressed 1) mechanically (MAO), 2) artisanally pressed (AAO), or 3) artisanally and obtained from goat-peeled fruit (GPAO). Oil samples prepared from Ait Baha, Tidzi, and Tiout are indexed AB, TZ, and TT; respectively. Mean \pm standard deviation of the values (five replicates) are presented.

	MAO_{AB}	MAO_{TZ}	MAO_{TT}	AAO_{AB}	AAO_{TZ}	AAO_{TT}	GPAO _{AB}	$GPAO_{TZ}$	$GPAO_{TT}$
110°C	24±0.5	27±0.5	31±1	18±0.5	16±0.5	14±0.5	14±0.5	16±0.5	16±0.5
110 C	24±0.3	27±0.3	31±1	18±0.3	10±0.3	14±0.3	14±0.5	10±0.5	10±0.3

Table 3. Fatty acid distribution (initial and final) in argan oil samples prepared from argan kernels pressed 1) mechanically (MAO), 2) artisanally pressed (AAO), or 3) artisanally and obtained from goat-peeled fruit (GPAO) and stored for 2 years at 5°C, 25°C in clear or dark glass, and at 40°C. Values are expressed in g/100g of total extracted fatty acids (±1) and result from four replicates.

	Initial	Stored at 25°C	Stored at 25°C	Stored
		in clear glass	in dark glass	at 40°C
MAO				
Palmitic acid	13	14	13	14
Stearic acid	5	5	5	5
Oleic acid	48	48	48	48
Linoleic acid	32	32	32	31
AAO				
Palmitic acid	13	15	14	14
Stearic acid	5	5	5	5
Oleic acid	47	47	47	47
Linoleic acid	33	33	33	33
GPAO				
Palmitic acid	14	15	14	15
Stearic acid	6	6	6	6
Oleic acid	48	47	48	48
Linoleic acid	31	30	31	30

Table 4. Sterol composition (initial and final) in argan oil samples prepared from argan kernels pressed 1) mechanically (MAO), 2) artisanally pressed (AAO), or 3) artisanally and obtained from goat-peeled fruit (GPAO) and stored for 2 years at 5° C, 25° C in clear or dark glass, and at 40° C. Values are expressed in g/100g of total sterols (± 2) and result from four replicates.

	Initial	Stored at 25°C	Stored at 25°C	Stored
		in clear glass	in dark glass	at 40°C
MAO				
Schottenol	46	46.5	46.5	45
Spinasterol	40	40	39	37
Δ -7-avenasterol	5.5	4	4	4
Stigmasta-8,22-				
dien-3β-ol	5	3.5	3.5	3
AAO				
Schottenol	44	44	44	44
Spinasterol	42	42	41	39
Δ -7-avenasterol	4	4	3.5	3
Stigmasta-8,22-				
dien-3β-ol	3.5	3	3	3
GPAO				
Schottenol	44	44	44	44
Spinasterol	43	42	41	40
Δ -7-avenasterol	6	3	4	3
Stigmasta-8,22-				
dien-3β-ol	4	3	4	3

Table 5. Tocopherol composition (initial and final) in argan oil samples prepared from argan kernels pressed 1) mechanically (MAO), 2) artisanally pressed (AAO), or 3) artisanally and obtained from goat-peeled fruit (GPAO) and stored for 2 years at 5°C, 25°C in clear or dark glass, and at 40°C. Results are expressed in mg/kg and come from three replicates.

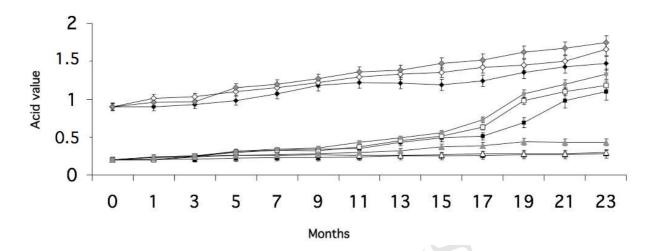

MAO	Initial	Stored at 25°C in clear glass	Stored at 25°C in dark glass	Stored at 40°C
MAO				
Total	675±25	564±25	601±25	589±25
α-tocopherol	59±8	33±7	41.5±8	36.5±7
β -tocopherol	6±2	2±1	2±1	2±1
γ-tocopherol	531±25	479±25	503±25	495±25
δ-tocopherol	51±8	33±7	38.5±7	36±7
AAO				
Total	766±25	545±25	599±25	528±25
α-tocopherol	72±10	20±8	35±10	27±10
β -tocopherol	7±2	2±1	2±1	2±1
γ-tocopherol	585±25	471±25	491±25	445±25
δ-tocopherol	82±12	34±10 47±8		42±8
GPAO				
Total	660±25	462±25	559±25	518±25
α-tocopherol	70±10	35±10	43±10	40±10
β -tocopherol	5±2	2±1	3±1	2±1
γ-tocopherol	531±25	386±25	467±25	437±25
δ-tocopherol	39±7	20±6	31±8	25±7

Table 6. Rancimat induction period (hrs) at 110° C of argan oil prepared from argan kernels pressed 1) mechanically (MAO), 2) artisanally pressed (AAO), or 3) artisanally and obtained from goat-peeled fruit (GPAO) and stored at 5° C, 25° C (clear or dark glass bottles), and 40° C for up to 2 years. Mean \pm standard deviation of the values (five replicates) are presented.

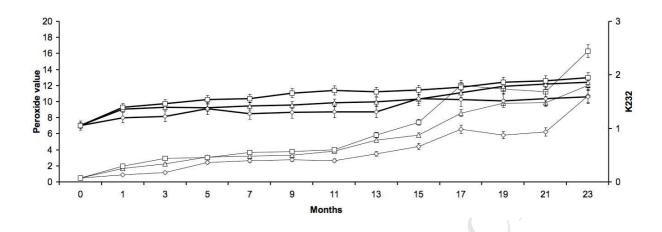
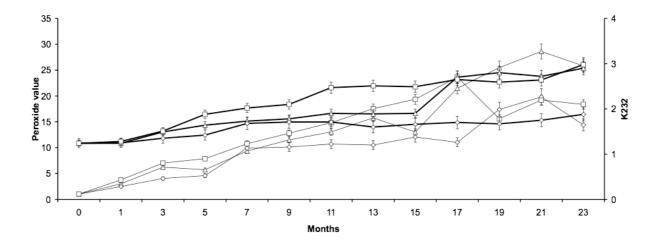

	6 Months	12 Months	18 Months	Final
MAO				R
Stored at 5°C	32±1	30±1	31±1	30±1
Stored at 25°C				
in clear glass	28±1	28±1	26±1	25±1
Stored at 25°C			, C	
in dark glass	29±1	28±1	27±1	27±1
Stored at 40°C	28±1	27±1	26±1	24±1
AAO				
Stored at 5°C	13±0.5	12±0.5	13±0.5	14±0.5
Stored at 25°C				
in clear glass	11±0.5	11±0.5	10±0.5	9±0.5
Stored at 25°C				
in dark glass	13±0.5	12±0.5	11±0.5	10±0.5
Stored at 40°C	10±0.5	10±0.5	10±0.5	8±0.5
GPAO		7		
Stored at 5°C	15±0.5	14±0.5	15±0.5	15±0.5
Stored at 25°C				
in clear glass	13±0.5	12±0.5	11±0.5	10±0.5
Stored at 25°C				
in dark glass	15±0.5	13±0.5	12±0.5	12±0.5
Stored at 40°C	12±0.5	12±0.5	11±0.5	9±0.5
		l .	l .	ı

Table 7. Saponification value, iodine index, and β -carotene level (initial and final) of argan oil samples prepared from argan kernels pressed 1) mechanically (MAO), 2) artisanally pressed (AAO), or 3) artisanally and obtained from goat-peeled fruit (GPAO) stored for 2 years at 5°C, 25°C in clear or dark glass, and at 40°C. Mean \pm standard deviation of the values (five replicates) are presented.


	Initial	Stored at 5°C	Stored at 25°C	Stored at 25°C	Stored at 40°C		
			in clear glass	in dark glass	R		
Saponification value (mg of KOH/g of oil)							
MAO	189.5±0.5	189.7±0.2	190.8±0.5	190.6±0.4	194±0.1		
AAO	192.6±0.5	192.7±0.5	193±0.5	193.2±0.2	193.9±0.5		
GPAO	190.6±0.4	192.5±0.5	191.7±0.6	191±0.5	193.4±0.6		
Iodine index (g of I ₂ /100g of oil)							
MAO	97.7±0.1	96.9±0.5	96.7±0.5	96.7±0.5	95.9±0.5		
AAO	102.4±0.5	101.2±0.5	99.4±0.5	99.4±0.6	98.3±0.4		
GPAO	96.8±0.5	95.7±0.5	94.5±0.5	96.4±0.5	95.6±0.5		
eta-Carotene level (mg/kg)							
MAO	20.7±0.5	18.8±0.5	17±0.5	17.4±0.5	17±0.5		
AAO	18±0.5	17.9±0.5	7.1±0.5	10.1±0.5	11.3±0.5		
GPAO	17.5±0.5	15.4±0.5	6.6±4	10.2±5	15.4±5		

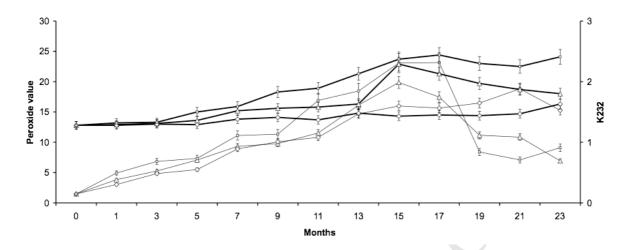

Fig. 1. Acid value of argan oil as a function of time (months). Oil samples were either sunlight-protected and stored at 25° C (black symbols), exposed to sunlight and stored at 25° C (white symbols), or sunlight-protected and stored at 40° C (grey symbols). Oil was prepared from fruits either peeled by goats (rhombs), mechanically peeled (triangles), or manually peeled (squares). Mean \pm standard deviation of the values (three replicates) are presented.

Fig. 2. Peroxide value and K_{232} (bold line) of mechanically prepared argan oil (MAO) as a function of time (months). Samples were either protected from sunlight and stored at 25°C (rhombs), exposed to sunlight and stored at 25°C (triangles), or protected from sunlight and stored at 40°C (squares). Mean \pm standard deviation of the values (three replicates) are presented.

Fig. 3. Peroxide value and K_{232} (bold line) of artisanally prepared argan oil (AAO) as a function of time (months). Samples were either protected from sunlight and stored at 25°C (rhombs), exposed to sunlight and stored at 25°C (triangles), or protected from sunlight and stored at 40°C (squares). Mean \pm standard deviation of the values (three replicates) are presented.

Fig. 4. Peroxide value and K_{232} (bold line) of argan oil prepared from goat-peeled fruit (GPAO) as a function of time (months). Samples were either protected from sunlight and stored at 25°C (rhombs), exposed to sunlight and stored at 25°C (triangles), or protected from sunlight and stored at 40°C (squares). Mean \pm standard deviation of the values (three replicates) are presented.